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Introduction
Objectives
The purpose of this document is to introduce you how to use the MOSAICbioacc application. This application
is based on the R software1 and especially the rjags library (version 4.10)2, to estimate parameters of
Toxico-Kinetic (TK) models under a Bayesian framework. MOSAICbioacc is developed as an R-Shiny
interface (version 1.6.0)3.
If you want to be kept informed, please email us: sandrine.charles@univ-lyon1.fr.

Context
The MOSAICbioacc application is a turn-key web tool providing bioaccumulation metrics (BCF/BMF/BSAF)
from a TK model fitted to accumulation and depuration data. It is designed to fulfill the requirements of
regulators when examining applications for market authorization of active substances.

Toxico-Kinetic/Toxico-Dynamic (TKTD) models are used to describe and predict the toxicity and
the effects of chemical substances on individual traits based on experimental data. The TK part describes the
relationship between the exposure medium and the organism, considering various processes such as ADME
(accumulation, depuration, metabolization and excretion)4. Regulation No 283/2013 (EU)5 defines the data
requirements for active substances of plant protection products in marketing authorization applications. In
particular, a bioaccumulation study on fish is required following OECD guideline 3056. Achieved in agreement
with EFSA’s scientific opinion on good modeling practices7,8, this ready-to-use on-line service allows to
easily estimate BCF/BMF/BSAF as required in a regulatory framework, accounting for bioaccumulation of
parent compounds and their metabolites through biotransformation. MOSAICbioacc does not expect any
input besides the accumulation-depuration data sets according to exposure concentrations. The service
automatically fits the TK model, initially defined from the appropriately user data and optimizes the
estimation of its parameters. Then, the service provides the corresponding bioaccumulation metrics, as well
as all goodness-of-fit criteria required to carefully check the reliability of the results9. All calculations are
based on the JAGS software and its companion R packages rjags2,10 and jagsUI11.

Installation
If you use the web interface (https://mosaic.univ-lyon1.fr/bioacc), you don’t need to install anything.

However, if you want to run the R script (downloadable from the application) by yourself, you need to install:

• the JAGS software2. Refer to http://sourceforge.net/projects/mcmc-jags/ to proceed.
• the R software1. Refer to https://cran.r-project.org/ to proceed.
• the rjags package2. You can install it directly from the R software > Tools > Install Packages >

rjags or from the CRAN website http://cran.r-project.org/web/packages/rjags/index.html.
• the jagsUI package11. You can install it directly from the R software > Tools > Install Packages >

jagsUI or from the CRAN website http://cran.r-project.org/web/packages/jagsUI/index.html.
• Others R packages necessary to run the application: tidyverse, gridExtra, ggmcmc, GGally,

ggmcmc, stringr and DT.
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Here is an example of the R code to install the required packages:

if(is.element('rjags', installed.packages()[,1]) == FALSE)

{install.packages('rjags')}

if(is.element('jagsUI', installed.packages()[,1]) == FALSE)

{install.packages('rjagsUI')}

if(is.element('tidyverse', installed.packages()[,1]) == FALSE)

{install.packages('tidyverse')}

if(is.element('gridExtra', installed.packages()[,1]) == FALSE)

{install.packages('gridExtra')}

if(is.element('ggmcmc', installed.packages()[,1]) == FALSE)

{install.packages('ggmcmc')}

if(is.element('GGally', installed.packages()[,1]) == FALSE)

{install.packages('GGally')}

if(is.element('stringr', installed.packages()[,1]) == FALSE)

{install.packages('stringr')}

if(is.element('DT', installed.packages()[,1]) == FALSE)

{install.packages('DT')}
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1 Step 1: Data uploading
When using MOSAICbioacc, the first step is to upload input data (Fig. 1):

Figure 1. Data uploading and user information to enter.

1.1 Format
You can upload your own data (click on “Browse”) by taking care about the format specification of your file.
MOSAICbioacc expects to receive data as a .txt file or a .csv file (comma, semicolon or tabular separator).
Each line of the table corresponds to a time point for a given replicate and a given exposure concentration
of the contaminant. The table must contain the four following columns, with exact header names (Table
@ref(tab:table2)):

• “time”: the time point of the measurement at the exposure concentration;
• “expw,” “exps,” “expf,” “exppw”: the concentration of the contaminant in the exposure medium (expw:

water, exps: sediment, expf: food, exppw: pore water);
• “replicate”: a number or a string that is unique for each replicate;
• “conc”: the concentration measurements of the contaminant within the organism.

According to your data, further columns can be added in the file:

• “concmℓ”: the concentration measurements of metabolite ℓ from the parent compound within the
organism (e.g. concm1, concm2, …). Please note that only metabolites of phase I (deriving directly
from the parent compound) in the metabolization process are considered;

• “growth”: the growth measurements (e.g. weight, size) of the organisms.

Then be careful to the units:

• The time points must be in hours, minutes, days or weeks;
• The exposure concentration in the medium must be in 𝜇𝑔.𝑚𝐿−1 or in 𝜇𝑔.𝑔−1;
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• The numbering of replicates is dimensionless;
• The concentration measurements (parent compound and metabolite(s)) within the organisms must be

in 𝜇𝑔.𝑔−1;
• The growth measurements must be in g, mg, cm, mm or other.

Table 1. Example of a data set ready to be uploaded.

time conc expw replicate
0 0.000 0.0044 2
3 0.225 0.0044 2
7 0.355 0.0044 2

14 0.553 0.0044 2
21 0.658 0.0044 2
28 0.785 0.0044 2

Once the upload is complete, you have to manually select the corresponding separator, the appropriate time
unit and the duration of the accumulation phase.

1.2 Example data
Instead of using your own data, you can try MOSAICbioacc from several example files that are
provided. Three data sets use a simple TK model (one exposure route and one elimination process),
whereas two data sets consider a more complex TK model, accounting for metabolization and growth (Fig. 2).

Please note that more data are, the more the TK model is complex, and the more the calculations take time.
Thus, we indicated the approximative mean time calculation for each example data sets (Fig. 2).

1.3 Visualization of the data
In case you upload a data set with several exposure concentrations, select the one for which you want to see
the results. We propose two types of visualization to check if the file has correctly been uploaded: as a table
or a plot (Fig. 3 and 4).

According to your data, you can visualize the plot for the parent compound, the metabolite(s) and/or for
growth (Fig. 5).

Don’t forget to select the appropriate duration of the accumulation phase and the growth unit (if required)
before to continue (Fig. 3 and 4, left side).
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Figure 2. Example files available in MOSAICbioacc.

Figure 3. Table of the uploaded data at the selected exposure concentration.

6



Figure 4. Plot of the uploaded data at the selected exposure concentration.

Figure 5. Plot of the uploaded data (metabolites) at the selected exposure concentration.
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2 Step 2: Model and parameters
The most complete model and its corresponding parameters are automatically selected according to the
experimental design as given within the uploaded data set (Fig. 6). Users can also deselect some of the
parameters (based on biological hypotheses related to the most probable exposure route or by neglecting one
elimination process, for example). These choices lead to the automatic building of a nested TK sub-model to
fit again on the data in clicking on the ‘Refresh’ button. The equations of the most complete model are
provided to the users on-line (Fig. 7).

Figure 6. Example of a model choice.

Figure 7. Example of equations of the model corresponding to Fig. 6.

For the accumulation phase:

• 𝑘𝑢𝑤
, water exposure;

• 𝑘𝑢𝑠
, sediment exposure;
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• 𝑘𝑢𝑓
, food exposure;

• 𝑘𝑢𝑝𝑤
, pore water exposure.

For the depuration phase:

• 𝑘𝑒𝑒
, excretion process;

• 𝑘𝑒𝑔
, if the weight of the organism varying;

• 𝑘𝑚ℓ
, if there are metabolites, where ℓ is the metabolite number.

Also, 𝜎 are the expected standard deviations of the measured contaminant concentration or growth of the
organisms:

• 𝜎𝑝 the standard deviation of the measured parent compound concentration in the organisms;
• 𝜎𝑚𝑒𝑡ℓ the standard deviation of the measured metabolite ℓ concentration in the organisms;
• 𝜎𝐺 the standard deviation of the measured growth of the organisms.

2.1 Theoretical model
A mathematical model is composed of two parts: the deterministic and the stochastic parts. In the case of
TK models fitted to concentration measurements, it can be written as follows (Eq. (1)):

𝑦 = 𝑓(𝑥, 𝜃) + 𝜀 (1)

with 𝑓 the function describing the mean relationship between 𝑥 and 𝑦, 𝑦 the observed variable, 𝑥 the
controlled variable, 𝜃 the parameter vector to estimate and 𝜀 the random variable describing the variability
of the data around the mean tendency.

The deterministic part
The organisms are here considered as single compartments for which a generic first-order kinetic bioaccumula-
tion model can be expressed as follows12 (Eqs. (2) and (3) for the accumulation phase and Eqs. (4) and (5)
for the elimination phase):

{
𝑑𝐶𝑝(𝑡)

𝑑𝑡 = 𝑈 − (𝐸 + 𝑀)𝐶𝑝(𝑡) (2)
𝑑𝐶𝑚ℓ

(𝑡)
𝑑𝑡 = 𝑘𝑚ℓ

𝐶𝑝(𝑡) − 𝑘𝑒ℓ
𝐶𝑚ℓ

(𝑡) ∀ℓ = 1 … 𝑀 (3)
for 0 ⩽ 𝑡 ⩽ 𝑡𝑐

{
𝑑𝐶𝑝(𝑡)

𝑑𝑡 = −(𝐸 + 𝑀)𝐶𝑝(𝑡) (4)
𝑑𝐶𝑚ℓ

(𝑡)
𝑑𝑡 = 𝑘𝑚ℓ

𝐶𝑝(𝑡) − 𝑘𝑒ℓ
𝐶𝑚ℓ

(𝑡) ∀ℓ = 1 … 𝑀 (5)
for 𝑡 > 𝑡𝑐

with:

Symbol Meaning
𝐼 total number of exposure sources
𝐽 total number of elimination processes
𝐿 total number of metabolites
𝑖 index of exposure sources, 𝑖 = 1 … 𝐼
𝑗 index of elimination processes, 𝑗 = 1 … 𝐽
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Symbol Meaning

ℓ index of metabolites, ℓ = 1 … 𝐿
𝑡 time (expressed in time units)
𝑐𝑖 exposure concentration of route 𝑖 (in 𝜇𝑔.𝑚𝐿−1)
𝐶𝑝(𝑡) internal concentration of the parent compound at time 𝑡 (in 𝜇𝑔.𝑔−1)
𝐶𝑚ℓ

(𝑡) internal concentration of metabolite ℓ (in 𝜇𝑔.𝑔−1)
𝑘𝑢𝑖

uptake rate of exposure source 𝑖 (expressed per time units)
𝑘𝑒𝑗

elimination rates of elimination process 𝑗 (expressed per time units)
𝑘𝑒𝑚ℓ

elimination rates of metabolite ℓ (expressed per time units)
𝑘𝑚ℓ

metabolization rate of metabolite ℓ (expressed per time units)
𝑡𝑐 duration of the accumulation phase
𝑈 = ∑𝐼

𝑖=1 𝑘𝑢𝑖
𝑐𝑖 sum of all uptake terms

𝐸 = ∑𝐽
𝑗=1 𝑘𝑒𝑗

sum of all elimination terms for the parent compound

𝑀 = ∑𝐿
ℓ=1 𝑘𝑚ℓ

sum of all elimination terms for metabolite ℓ

The simplest model in MOSAICbioacc application considers only one exposure route (for example
by water, parameter 𝑘𝑢𝑤

) with the corresponding elimination rate (excretion, parameter 𝑘𝑒𝑒
), as given by

Eq. (6):

{
𝑑𝐶𝑝(𝑡)

𝑑𝑡 = 𝑘𝑢𝑤
𝑐𝑤 − 𝑘𝑒𝑒

𝐶𝑝(𝑡) for 0 ⩽ 𝑡 ⩽ 𝑡𝑐
𝑑𝐶𝑝(𝑡)

𝑑𝑡 = −𝑘𝑒𝑒
𝐶𝑝(𝑡) for 𝑡 > 𝑡𝑐

(6)

where 𝑘𝑢𝑤
is the uptake rate from water (𝑡𝑖𝑚𝑒−1), 𝑐𝑤 is the mean contaminant concentration in water

(𝜇𝑔.𝑚𝐿−1) and 𝑘𝑒𝑒
is the rate related to the excretion process (𝑡𝑖𝑚𝑒−1).

The more complex model in MOSAICbioacc application considers a maximum of four exposure routes (water:
𝑘𝑢𝑤

, pore water: 𝑘𝑢𝑝𝑤
, sediment: 𝑘𝑢𝑠

and food: 𝑘𝑢𝑓
) and a maximum of three elimination processes

(excretion, 𝑘𝑒𝑒
, biotransformation: 𝑘𝑚ℓ, growth dilution: 𝑘𝑒𝑔

), as given by Eq. (7) for parent compound, Eq.
(8) for metabolite ℓ and Eq. (9) for growth (Von Bertalanffy equations, classically used for fishes):

{
𝑑𝐶𝑝(𝑡)

𝑑𝑡 = 𝑘𝑢𝑤
𝑐𝑤 + 𝑘𝑢𝑝𝑤

𝑐𝑝𝑤 + 𝑘𝑢𝑠
𝑐𝑠 + 𝑘𝑢𝑓

𝑐𝑓 − (𝑘𝑒𝑒
+ 𝑘𝑒𝑔

+ 𝑘𝑚ℓ
)𝐶𝑝(𝑡) for 0 ⩽ 𝑡 ⩽ 𝑡𝑐

𝑑𝐶𝑝(𝑡)
𝑑𝑡 = −(𝑘𝑒𝑒

+ 𝑘𝑒𝑔
+ 𝑘𝑚ℓ

)𝐶𝑝(𝑡) for 𝑡 > 𝑡𝑐
(7)

𝑑𝐶𝑚ℓ
(𝑡)

𝑑𝑡 = 𝑘𝑚ℓ
𝐶𝑝(𝑡) − 𝑘𝑒𝑚ℓ

𝐶𝑚ℓ
(𝑡) (8)

𝑑𝐺(𝑡)
𝑑𝑡 = 𝑘𝑒𝑔

(𝑔𝑚𝑎𝑥 − 𝐺(𝑡)) (9)

10



with 𝐺(𝑡) the measured growth of the organism at time 𝑡 (in growth unit) and 𝑔𝑚𝑎𝑥 the asymptotic growth
ℓ (in 𝜇𝑔.𝑔−1).
More details and especially the exact solutions of these equations are given here.

The stochastic part
We assumed a Gaussian (normal) probability distribution of the concentration measurements within the
organism as follows (Eqs. (10) to (12)):

𝐶𝑜𝑏𝑠𝑝
(𝑡) ∼ 𝒩(𝐶𝑝(𝑡), 𝜎2

𝑝) (10)

𝐶𝑜𝑏𝑠𝑚ℓ
(𝑡) ∼ 𝒩(𝐶𝑚ℓ

(𝑡), 𝜎2
𝑚ℓ

) (11)

𝐺𝑜𝑏𝑠(𝑡) ∼ 𝒩(𝐺(𝑡), 𝜎2
𝑔) (12)

where 𝒩 stands for the normal law, 𝐶𝑜𝑏𝑠𝑝
(𝑡) and 𝐶𝑜𝑏𝑠𝑚ℓ

(𝑡) correspond to the measured parent
and metabolite ℓ concentrations within the organism measured at time 𝑡, 𝐶𝑝(𝑡) is the parent compound
concentration at time 𝑡 predicted by the model based on to Eqs. (2) and (4), 𝐶𝑚ℓ

(𝑡) is the concentration of
metabolite ℓ at time 𝑡 predicted by the model based on Eqs. (3) and (5), 𝐺𝑜𝑏𝑠(𝑡) is the measured growth
of the organism at time 𝑡, 𝐺(𝑡) is the growth at time 𝑡 predicted by the model based on Eq. (9), 𝜎 are
the expected standard deviations of the measured contaminant concentration or growth of the organisms
(𝜇𝑔.𝑔−1 or growth unit).

2.2 Directed Acyclic Graph
A Directed Acyclic Graph (DAG) is given on Fig. 8, which symbolize the deterministic links between
parameters and variables for the generic TK model (Eqs.(2) to (5)) and the stochastic links between the
observed and predicted data (Eqs. (10) to (12)).

2.3 Choice of prior distributions
In MOSAICbioacc, prior choice is hidden to the user. However, we give here some information to help the user
to understand the model behind. Before conducting an experimental study, prior distributions are defined for
each parameter according to information available from the literature, expert knowledge and/or previous
experiments. Depending on the sources where the information come from, informative, semi-informative or
non-informative prior distributions can be used. If a parameter was already estimated in previous studies or
if previous data are available, a prior distribution can easily be characterized with an appropriate probability
distribution. However, if no information is available but an order of magnitude is (positive only, for example),
it is possible to use a weakly informative prior. If any information is available on the order of magnitude of
a parameter, its prior is preferably defined on a decimal logarithm scale in order to consider with equal
probability both low and high expected values.

As MOSAICbioacc application has to be the most generic as possible, priors were assumed to be
non-informative log10-uniform distributions within [-5, 5] for all uptake and elimination rate constants. For
growth, a uniform prior distribution [10 × 𝑚𝑒𝑎𝑛(𝐺)/4, 10 × 𝑚𝑒𝑎𝑛(𝐺)] was assumed for parameter
𝑔𝑚𝑎𝑥 and a uniform prior distribution [0, (10 × 𝑚𝑒𝑎𝑛(𝐺))/(8 − 10−10)] for parameter 𝑔0. We assumed
a non-informative (0,𝐴) uniform prior for all 𝜎 with a large A, here defined as five times the maximum
internal measured concentration, which is then removed from the data set, as usually proceeded13.
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Figure 8. Directed acyclic graph of the generic TK model. Observed variables, such as the contaminant
concentration in organisms and medium 𝑖 and growth data, are represented by rectangle nodes. Model
parameters and variables are represented by circular nodes. Dotted arrows represent deterministic links (Eqs.
(2) to (5)), while solid arrows represent stochastic links between predicted and observed data (Eqs. (10) to
(12)).

2.4 Bayesian inference
The Bayesian approach considers that data are fixed but that the parameters are unknown random variables
following a probabilistic distribution. This leads to the following practical implications: (i) the Bayesian
process optimises the probability of parameter vector 𝜃 given the data set Y used for calibration (the
so-called posterior distribution) not only the likelihood (see below); (ii) there is a need to provide reasonable
prior information, then updating this information by accounting for the data. Below is a short introduction
to Bayesian principles14.

In short, the Bayesian approach requires the following steps:
• Choose the prior distributions on parameters based on previous results, literature or expert knowledge
(without looking at the data to fit): P(𝜃);
• Define the probabilistic model from the data, that is the random variable whose data would be one
realisation assuming known values of parameters, namely the likelihood: P(Y ∣ 𝜃);
• Calculate the joint posterior distribution of the parameters given the data via the Bayes formula:
P(𝜃 ∣ Y);
• Provide statistical summaries of parameter estimates (namely, appropriate quantiles);
• Get any function of the parameter estimates as posterior probability distribution, like for example BCF
calculations or predictions of new observations.

Basic principles
The keystone of the Bayesian approach is the Bayes formula (Eq. (13):

P(𝜃 ∣ Y) = P(𝜃)P(Y ∣ 𝜃)
P(Y)

(13)

where Y are the observed data; P(𝜃 ∣ Y) is the joint posterior distribution of parameter vector �; P(Y ∣ 𝜃)
is the likelihood of the data given the parameters; P(𝜃) is the joint prior distribution of parameter vector
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𝜃. Given that P(Y) is known and fixed, it is often not considered as it does not depend on �and will not
influence the posterior distribution. Hence (Eq. (14)):

P(𝜃 ∣ Y) ≃ P(𝜃)P(Y ∣ 𝜃) (14)

with P(𝜃)P(𝑌 |𝜃) the unormalised posterior density leading to (Eq. (15)):

P(Y) = ∫ P(𝜃)P(Y ∣ 𝜃)𝑑𝜃 (15)

The prior distribution P(𝜃) expresses the available parameter information without knowing the observed
data, while the posterior distribution P(𝜃 ∣ Y) combines this prior information (which may be more or less
informative depending on what is known about the value of the parameters beforehand) with evidence from
the data (expressed through the likelihood) into a joint posterior density probability distribution for the
parameters. The overall expectation is to get a narrower posterior distribution compared to the prior one
after the computing of the Bayesian algorithm: the difference between the two distributions reflects the
information provided by the data. When the non-informative prior is vague (translated for example into a
flat uniform distribution), and the data sufficiently informative, the results are similar than those obtained
under a frequentist approach.

Joint posterior distribution
The joint posterior distribution has the dimension of the number of parameters times the number of
iterations within the Monte Carlo Markov Chain (MCMC) chains. It can be plotted in planes of parameter
pairs to visualise correlations between parameters. In an example case with two binormally distributed
parameters, the joint posterior distribution can be plotted in the 2D-parameter space as illustrated by ellipses
on Fig. 9; in this example, parameters 𝜃1 and 𝜃2 appear slightly positively correlated. From the joint
posterior distribution, the marginal posterior distributions for each parameter (as illustrated by grey normal
distributions on bottom and left sides of Fig. 9) can be extracted. Then, from the marginal posterior
distributions, some statistical summaries on parameter estimates can be extracted, usually the median
(illustrated by vertical and horizontal plain grey lines on Fig. 9) as well as 2.5% and 97.5% quantiles to
serve as 95% credible intervals (illustrated by vertical and horizontal dotted grey lines on Fig. 9). Another
advantage of having the joint posterior distribution is that the posterior distribution of any function of the
parameters can also be obtained.

Figure 9. Theoretical binormal joint posterior distribution of parameter vector (𝜃1, 𝜃2). Ellipses correspond
to isoclines of the joint posterior distribution; grey distributions are marginal posterior distributions of both
parameters; solid horizontal and vertical lines correspond to the medians of these marginal distributions;
dashed horizontal and vertical lines correspond to the 2.5% and 97.5% quantiles of the marginal distributions.

Parameter uncertainties
One implication of adopting a Bayesian approach is that the uncertainty on a parameter can easily be
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expressed as a probability distribution from which a credible interval (also called a Bayesian confidence
interval) can be extracted. For example, the 95% credible interval delimits a range of values where the
parameters lies with a 95% probability.

Numerical computation
Many numerical methods have been developed to approximately compute the joint posterior distribution,
mainly based on simulations by Monte Carlo Markov Chain (MCMC) sampling methods used to generate
random numbers from complex joint distributions. MCMC algorithms are a general method based on
drawing values of parameter vector 𝜃 from approximate distributions and then correcting those draws to
better approximate the target posterior distribution P(𝜃 ∣ Y). The sampling is done sequentially, with the
distribution of the sampled draws depending only on the last value drawn; hence, the draws form a Markov
Chain. The key to the method success, however, is not the Markov property but rather the fact that the
approximate distributions are improved at each step of the simulation, in the sense that it finally converges
to the target posterior distribution after an enough number of iterations. Indeed, with MCMC algorithms,
the simulation process must run long enough so that the distribution of the current draws is close enough to
the desired target posterior distribution.
MCMC algorithms use random walk algorithms, among which the Metropolis algorithm (and its generalisation,
the Metropolis–Hasting algorithm) as an adaptation of a random walk with an acceptance/rejection
rule to converge to the specified target distribution15,16. The Gibbs sampler is a special case of the
Metropolis–Hastings algorithm applicable when the joint distribution is not known explicitly, or when it is
difficult to directly sample from, while the conditional distribution of each parameter is known and it is easy
(or at least, easier) to sample from17.
Several tools are available to automatically perform these computations. In MOSAICbioacc, JAGS10 (version
4.3.0. (2017-08-10)) and R software1 (version 4.0.2 (2020-06-22)) are used. The models are fitted to
bioaccumulation data using Bayesian inference via Monte Carlo Markov Chain (MCMC) sampling based on
a Gibbs-type algorithm. For each model, we start by running a short sampling phase with three chains
(5,000 iterations after a burn-in phase of 10,000 iterations) then using the Raftery and Lewis18 method to
set the necessary thinning and number of iterations to reach an accurate estimation of the joint posterior
distribution.
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3 Step 3: Results
Once data uploaded and the model stated, you can click on button “Calculate and Display.” We
recommend you to pay attention to the selected exposure concentration before to proceed to calculations.
Besides, calculations can take several minutes for the most complicated models.

You will find at the end of this user guide an appendix (section 5) which gathers together other types of
results which can be obtained with other data sets and how to interpret them.
To illustrate the result section, here we used the example file ‘Pimephales_two.csv,’ where Pimephales
promelas are exposed to a highly hydrophobic substance (logKow = 9) spiked water at 0.0044 𝜇𝑔.𝑚𝐿−1

and where the duration of the accumulation phase is equal to 49 days.

3.1 Bioaccumulation metrics
As a first result, we provide the bioaccumulation metrics (BCF, BCFpw, BSAF and BMF). Please, note that
this section is reactive according to your data. If required, change tab to get the other bioaccumulation
metrics (Fig. 10).

Figure 10. Example of reactive tabs for bioaccumulation metric section.

3.1.1 BCF

As a first result, we provide the kinetic bioconcentration factor (𝐵𝐶𝐹𝑘). The BCF at steady-state (𝐵𝐶𝐹𝑠𝑠)
can be asked if you consider a steady-state is almost reached at the end of the accumulation phase. These
factors are mathematically given by Equations (16) and (17) respectively:

𝐵𝐶𝐹𝑘 =
𝑘𝑢𝑤

∑𝐽
𝑗=1 𝑘𝑒𝑗

+ ∑𝐿
ℓ=1 𝑘𝑚ℓ

(16)

𝐵𝐶𝐹𝑠𝑠 =
𝐶𝑝(𝑡𝑐)

𝑐𝑤
(17)

where 𝐶𝑝(𝑡𝑐) is the contaminant concentration within the organism at steady-state that is at the end of the
accumulation phase (𝜇𝑔.𝑔−1) and 𝑐𝑤 is the contaminant concentration in water (𝜇𝑔.𝑚𝐿−1).

BCF are given as probability distributions (Fig. 11) and summarized with their median and
their 95% uncertainty limits (95% credible intervals, Table 3).
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Figure 11. Probability density of 𝐵𝐶𝐹𝑘 and 𝐵𝐶𝐹𝑠𝑠. The middle dotted line represents the median value,
and the dotted lines on left and right sides are the 2.5 and 97.5% quantiles. These results were obtained with
the example file Pimephales_two.csv.

Table 3. Median and 95% uncertainty limits of 𝐵𝐶𝐹𝑘 and 𝐵𝐶𝐹𝑠𝑠. These results were obtained with the
example file Pimephales_two.csv.

2.5% 50% 97.5%

𝐵𝐶𝐹𝑘 232 276 337
𝐵𝐶𝐹𝑠𝑠 148 232 316

In the above example, the steady-state is almost reached at time 𝑡𝑐 (Fig. 12), thus it is reasonable to ask
for the 𝐵𝐶𝐹𝑠𝑠.
Note that the OECD guideline 3056 reports that “greater emphasis must be on kinetic BCF estimate (when
possible) next to estimating the BCF at steady-state.” Thus we recommend to preferentially consider the
𝐵𝐶𝐹𝑘 rather than the 𝐵𝐶𝐹𝑠𝑠.

3.1.2 BCFpw

When appropriate, we provide the kinetic pore water bioconcentration factor (𝐵𝐶𝐹𝑝𝑤𝑘
).Again, the cor-

responding BCF at steady-state (𝐵𝐶𝐹𝑝𝑤𝑠𝑠
) can be asked. These factors are mathematically given by

Equations (18) and (19) respectively:

𝐵𝐶𝐹𝑝𝑤𝑘
=

𝑘𝑢𝑝𝑤

∑𝐽
𝑗=1 𝑘𝑒𝑗

+ ∑𝐿
ℓ=1 𝑘𝑚ℓ

(18)

𝐵𝐶𝐹𝑝𝑤𝑠𝑠
=

𝐶𝑝(𝑡𝑐)
𝑐𝑝𝑤

(19)

where 𝐶𝑝(𝑡𝑐) is the contaminant concentration within the organism at time 𝑡𝑐 (𝜇𝑔.𝑔−1) and 𝑐𝑝𝑤 is the
contaminant concentration in pore water (𝜇𝑔.𝑚𝐿−1). BCFpw are given as probability distributions and
summarized with their median and their 95% uncertainty limits (95% credible intervals).
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3.1.3 BSAF

When appropriate, we provide the kinetic biota-sediment factor (𝐵𝑆𝐴𝐹𝑘) and the BSAF at steady-state
(𝐵𝑆𝐴𝐹𝑠𝑠) can be asked. These factors are mathematically given by Equations (20) and (21) respectively:

𝐵𝑆𝐴𝐹𝑘 =
𝑘𝑢𝑠

∑𝐽
𝑗=1 𝑘𝑒𝑗

+ ∑𝐿
ℓ=1 𝑘𝑚ℓ

(20)

𝐵𝑆𝐴𝐹𝑠𝑠 =
𝐶𝑝(𝑡𝑐)

𝑐𝑠
(21)

where 𝐶𝑝(𝑡𝑐) is the contaminant concentration within the organism at time 𝑡𝑐 (𝜇𝑔.𝑔−1) and 𝑐𝑠 is the
contaminant concentration in sediment (𝜇𝑔.𝑔−1). BSAF are given as probability distributions and summarized
with their median and their 95% uncertainty limits (95% credible intervals).

3.1.4 BMF

When appropriate, we provide the kinetic biomagnification factor (𝐵𝑀𝐹𝑘) and the BMF at steady-state
(𝐵𝑆𝐴𝐹𝑠𝑠) can be asked. These factors are mathematically given by Equations (22) and (23) respectively:

𝐵𝑀𝐹𝑘 =
𝑘𝑢𝑓

∑𝐽
𝑗=1 𝑘𝑒𝑗

+ ∑𝐿
ℓ=1 𝑘𝑚ℓ

(22)

𝐵𝑀𝐹𝑠𝑠 =
𝐶𝑝(𝑡𝑐)

𝑐𝑓
(23)

where 𝐶𝑝(𝑡𝑐) is the contaminant concentration within the organism at time 𝑡𝑐 (𝜇𝑔.𝑔−1) and 𝑐𝑓 is the
contaminant concentration in food (𝜇𝑔.𝑔−1). BMF are given as probability distributions and summarized
with their median and their 95% uncertainty limits (95% credible intervals).

3.1.5 Coefficient of variation

A coefficient of variation (𝐶𝑉) for each bioaccumulation metric can be calculated as follows (Eq. (24)):

𝐶𝑉 = 𝑄𝑘97.5 − 𝑄𝑘2.5
4 × 𝑄𝑘50

(24)

with 𝑄𝑘2.5, 𝑄𝑘50 and 𝑄𝑘97.5 the 2.5%, 50% and 97.5% quantiles of the kinetic bioaccumulation metric.
Based on our experiment, the coefficient of variation is expected to not exceed 0.5.
If the bioaccumulation metric at steady-state is asked, the corresponding 𝐶𝑉 is given (Eq. (25)):

𝐶𝑉 = 𝑄𝑠𝑠97.5 − 𝑄𝑠𝑠2.5
4 × 𝑄𝑠𝑠50

(25)

with 𝑄𝑠𝑠2.5, 𝑄𝑠𝑠50 and 𝑄𝑠𝑠97.5 the 2.5%, 50% and 97.5% quantiles of the steady-state bioaccumulation
metric.
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3.2 Predictions
We first provide the fitted curve superimposed to the observations (Fig. 12, black dots): the orange plain
line is the median curve, the gray zone is the uncertainty band delimited by 2.5% and 97.5% quantiles of
predictions in orange dotted lines. This section is reactive according to your data: if there is biotransformation
or growth, the fitted curve superimposed to the observations for parent compound, metabolite(s) and/or
growth data are given (for example from the example file “Male_Gammarus_seanine.csv,” Fig. 13).
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Figure 12. Measured (black dots) and predicted contaminant concentrations in the organism (µg.g−1).
Median predictions are symbolized by the orange plain line and the uncertainty bands by the gray zone which
is delimited by the 2.5% and 97.5% quantiles in orange dotted lines. The black dotted vertical line indicates
the separation between the accumulation phase and the depuration phase. These results were obtained with
the example file Pimephales_two.csv.

From the joint posterior distribution, we can obtain the marginal posterior distributions for each parameter,
which can be summarized by their medians and their 95% credible intervals (Table 4).

Table 4. Example of parameter medians (50% quantile) and 95% credible intervals (2.5% - 97.5% quantiles).
These results were obtained with the example file Pimephales_two.csv.

2.5% 50% 97.5%

𝑘𝑢𝑤
7.437 10.61 15.55 𝑑−1

𝑘𝑒𝑒
0.0233 0.03873 0.06168 𝑑−1

𝜎𝑝 0.1246 0.1679 0.244 𝜇𝑔.𝑔−1

3.3 Goodness-of-fit criteria
Goodness-of-fit criteria are given below in our prioritised order; the Posterior Predictive Check (PPC) and
the prior-posterior comparison are the most important to check; if they do not correspond to the expectation,
you must consider your results with an even more particular attention. As an indication, if at least two
criteria are fulfilled, the results obtained can be considered as good enough. We suggest that you refer to the
appendix at the end of the document for more information about cases not in accordance with the classical
expectations (section 5).
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Figure 13. Measured (black dots) and predicted contaminant concentrations in the organism (µg.g−1) or
growth (in 𝑔). Median predictions are symbolized by the orange plain line and the uncertainty bands by
the gray zone which is delimited by the 2.5% and 97.5% quantiles in orange dotted lines. The black dotted
vertical line indicates the separation between the accumulation phase and the depuration phase. These results
were obtained with the example file Male_Gammarus_seanine.csv.

19



3.3.1 Posterior Predictive Check (PPC)

The PPC shows the observed values against their corresponding estimated predictions (black dots),
along with their 95% credible interval (vertical segments). If the fit is correct, we expect to see 95%
of the data within the intervals. Ideally, observations and predictions should coincide, so we would
expect to see black dots along the first bisector 𝑦 = 𝑥 (plain black line). The 95% credible inter-
vals are colored in green if they overlap this line, in red otherwise. In the following example (Fig.
14), 95.24% of the measured concentrations (𝑛 = 20/21) are in the 95% credible intervals of their predictions.
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Figure 14. Example of a PPC plot: predicted against observed concentrations (black dots) and predicted
95% credible intervals (vertical green and red segments). These results were obtained with the example file
Pimephales_two.csv.
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3.3.2 Prior and posterior distributions

An example of prior and posterior distributions is illustrated in Fig. 15. The prior distribution is represented
by the gray area and the posterior distribution by the orange area. The precision of the model parameter
estimation can be visualized by comparing prior and posterior distributions: the overall expectation is to get
a narrower posterior distribution compared to the prior one, what reflects that data contributed enough to
precisely estimate parameters. In the example of Fig. 15, marginal posterior distributions for 𝑘𝑢𝑤

and 𝑘𝑒𝑒
are narrower (orange area) than their respective prior distributions (grey area). Within the application, you
can chose to visualize either the deterministic or the stochastic parameters by selecting the corresponding tab.

Figure 15. Example of prior (gray) and posterior (orange) probability distributions for a set of parameter.
These results were obtained with the example file Pimephales_two.csv.

3.3.3 Correlations between parameters

MOSAICbioacc gives a colored matrix in order to highlight correlations between parameters (Fig. 16, 17).
This output allows you to see at a glance the most correlated or anti-correlated parameters, in order to
diagnose potential problems of precision due to highly correlated parameters.

Correlations between parameters can also be visualized by projecting the joint posterior distribution
in a plot matrix with planes of parameter pairs (Fig. 18, lower triangular elements), marginal pos-
terior distribution of each model parameter (Fig. 18, diagonal) and Pearson correlation coefficients
(Fig. 18, upper triangular elements). Correlations are expected to be low (reflected by “potatoid”
shapes of density lines in orange, e.g., 𝑘𝑒𝑒

and 𝜎𝑝 in Fig. 18); a leaning elliptical shape translates
high correlations (positive if leaning to the right, e.g., 𝑘𝑢𝑤

and 𝑘𝑒𝑒
in Fig. 18, negative if leaning to the left).
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Figure 16. Example of a cross correlation colored matrix between two parameters. These results were
obtained with the example file Pimephales_two.csv.

Figure 17. Example of a cross correlation matrix, from the example file Male_Gammarus_seanine.csv.
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In the example of Fig. 18, 𝑘𝑢𝑤
and 𝑘𝑒𝑒

are highly positively correlated (𝑟 = 0.941), meaning
that the estimate obtained for one of these two parameters will strongly influence the estimate of the other
parameter. This high correlation may be due to the model structure (e.g., by definition 𝑘𝑢𝑤

and 𝑘𝑒𝑒
are

correlated), or comes from data not fully appropriate to precisely estimate the parameters.

Corr:
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Figure 18. Example of parameter correlations. These results were obtained with the example file
Pimephales_two.csv.

3.3.4 Potential Scale Reduction Factors (PSRF)

Convergence of the MCMC can be checked with the Gelman-Rubin diagnostic expressed with the potential
scale reduction factor (PSRF). Approximate convergence is diagnosed when the PSRF is close to 1.00 (Fig.
19)19. In the example of Fig. 19, the PSRF is equal to 1.0 for each model parameter, thus the convergence
of the MCMC was correctly achieved.

3.3.5 Watanabe-Akaike Information Criterion (WAIC)

Information criteria offer a computationally appealing way of estimating the generalization performance of
the model. A fully Bayesian criterion is the widely applicable information criterion (WAIC) by Watanabe
a penalized deviance statistics accounting for the uncertainty in the parameters and can be used also for
singular models. WAIC is widely used in model comparison for a same dataset (e.g., with or without 𝑘𝑒𝑒

).
Sub-models with lower WAIC values will be preferred.
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Figure 19. Example of a PSRF. These results were obtained with the example file Pimephales_two.csv.

For example, for highly hydrophobic substances, two models can be compared, one considering water and
food exposure (which we call here model (a)) and one model considering food-only exposure due to the
physico-chemical properties of the substance (model (b)). If the WAIC of model (a) is smaller than the
WAIC of model (b), then model (a) will be preferred.

In this version of MOSAICbioacc, the users can deselect some of the parameters (based on biological hypotheses
related to the most probable exposure route or by neglecting one elimination process, for example). In these
specific cases, tested TK sub-models (e.g., with all selected parameters corresponding to the complete TK
model and sub-model with some parameter(s) deselected) can be compared with the WAIC criterion for each
tested sub-model.

3.3.6 Deviance Information Criterion (DIC)

This criterion, denoted DIC, is a penalized deviance statistics accounting for the number of parameters for
use in model comparison for a same data set (e.g., with or without 𝑘𝑒𝑒

). Sub-models with lower DIC
values will be preferred18. DIC value can be negative. However, DIC value itself is not important, what
matters is the difference between two DICs, what can help in deciding which model is the most appropriate.

For example, for highly hydrophobic substances, two models can be compared, one considering water and
food exposure (which we call here model (a)) and one model considering food-only exposure due to the
physico-chemical properties of the substance (model (b)). If the DIC of model (a) is smaller than the DIC of
model (b), then model (a) will be preferred.

In this version of MOSAICbioacc, the users can deselect some of the parameters (based on biological hypotheses
related to the most probable exposure route or by neglecting one elimination process, for example). In these
specific cases, tested TK sub-models (e.g., with all selected parameters corresponding to the complete TK
model and sub-model with some parameter(s) deselected) can be compared with the DIC criterion.
You can get more information of the use of the DIC in Ratier et al. (2019)12.

3.3.7 Traces of MCMC iterations

A traceplot is also an essential plot for assessing convergence and diagnosing of MCMC. It shows the time
series of the sampling process leading to the joint posterior distribution. Different colors are used for each
of the chains (here three) to assess the within-chain convergence. The user must check whether all MCMC
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converge towards the same distribution limit (overlapping of the chains). This can be verified visually by
observing the simulated values for each node of interest as a function of the number of iterations (Fig. 20).
In the following example, the three MCMC overlap and converge towards the same distribution limit for each
model parameter. Thus, the algorithm has suitably converged.
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Figure 20. Example of the overlapping of the MCMC. These results were obtained with the example file
Pimephales_two.csv.
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4 Step 4: Downloads
4.1 Plots
You can download all plots as displayed by the application in several formats (.png, .jpg, .pdf, .svg, .tiff
and .eps): equations, bioaccumulation metrics, fitting results and goodness-of-fit criteria. They can be
downloadable separately or simultaneously in a .zip file.

4.2 Tables
You can also download table results in .txt or .csv, as for example the BCF numerical values and the joint
posterior distribution for all parameters (columns) and all iterations of the MCMC algorithm (lines).

4.3 Report
You can easily download a full report of your calculations, which summarize all the results in a .pdf, .html or
.docx file. We warn you that the creation of the report may take some time depending on your data set.

4.4 R Script
The R script can be downloaded as a gateway to identically reproduce all calculations provided within the
application (this guarantees the full reproducibility of the results) and to perform further calculations directly
within the R software with your own computer.

26



5 Appendix: how to interpret not “ideal” results
In practice, you may encounter situations where the results are not “ideal,” conversely to those presented
in sections 1 to 5 of this document. This appendix will allow you to better interpret the results in such
cases. For the goodness-of-fit criteria, we suggest to consider as enough the fact that two criteria as given by
MOSAICbioacc are receivable.

5.1 Bioaccumulation metrics
If you asked for the 𝐵𝐶𝐹𝑠𝑠, 𝐵𝐶𝐹𝑝𝑤𝑠𝑠

, 𝐵𝑆𝐴𝐹𝑠𝑠 or 𝐵𝑀𝐹𝑠𝑠 but the median value and the 95% credible
interval are not of the same order of magnitude than for the 𝐵𝐶𝐹𝑘, 𝐵𝐶𝐹𝑝𝑤𝑘

, 𝐵𝑆𝐴𝐹𝑘 or 𝐵𝑀𝐹𝑘, then ensure
the accumulation phase really reached the steady-state (i.e., at least three successive measured concentrations
with no statistical differences).

On Fig. 21, you can see a counter-example for asking for the 𝐵𝐶𝐹𝑠𝑠:
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Figure 21. Counter-example for asking for the 𝐵𝐶𝐹𝑠𝑠.

Indeed, the steady-state was not reached at the end of the accumulation phase (day 4, Fig. 22). Thus, the
median value for 𝐵𝐶𝐹𝑠𝑠 is totally different from the one of 𝐵𝐶𝐹𝑘. The same consideration can be applied
for the other bioaccumulation metrics.
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Figure 22. Example of fitting results when the steady-state was not reached at the end of the accumulation
phase.
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5.2 Parameter estimates
Large 95% credible intervals can sometimes be obtained for some parameters, especially for parameter 𝑘𝑒𝑒
(Table 5). Such a situation leads to non precise estimate of these parameters, what should question their use
for predictions. This can be due to the model structure or the experimental data themselves. Thus, it is an
information to consider when you interpret the fitting results.

Table 5. Example of parameter medians (50% quantile) with their 95% credible intervals (2.5% - 97.5%
quantiles) with unprecise estimates for 𝑘𝑒𝑒.

2.5% 50% 97.5%
𝑘𝑢𝑤

641.4 726.5 836.2 𝑑−1

𝑘𝑒𝑒
1.605e-05 0.005828 0.02001 𝑑−1

𝜎𝑝 0.04666 0.06305 0.09025 𝜇𝑔.𝑔−1

5.3 PPC
If the fit is correct, it is expected to get 95% of the data within the 95% credible intervals of their predictions.
So, if the range of the percentage of data within the credible intervals is between 92 and 96%, calculations
and predictions can be considered as good enough. If the percentage is under 92%, predictions are considered
as underestimated. If the percentage is upper 96%, predictions are considered as overestimated.

On Fig. 23, you can see a counter-example with large uncertainties of the model predictions leading to 100%
of the data within their credible intervals.
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Figure 23. Example of a PPC where there are large uncertainties of the model predictions leading to 100%
of the data within their credible intervals.

5.4 Prior and posterior distributions
We remind you that prior distributions are defined by default to be the most generic as possible. However, it
can happen that your data would require other prior distributions (e.g., inspired by literature, expert knowledge
or by a previous study leading to parameter estimations outside of the default values as used in MOSAICbioacc).
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The precision of the model parameter estimation can be visualized by comparing prior and poste-
rior distributions: the overall expectation is to get a narrower posterior distribution compared to the prior
one, what reflects that data contributed enough to precisely estimate parameters.
If one of the posterior distribution for a model parameter has bounds close to the lower or the upper bound
of the prior distributions (e.g. 𝑙𝑜𝑔10(𝜃) ≃ −5 or 𝑙𝑜𝑔10(𝜃) ≃ 5 with 𝜃 being one of the model parameter), then
the prior distribution may be not well defined. For example, if a distribution tail is observed at these bounds
as illustrated on the left of Fig. 24 (here the distribution tail of 𝑙𝑜𝑔10(𝑘𝑒𝑒

) is too close to −5, the lower
bound), then the inference process needs to be questioned. Conversely, the fit can be considered as correct if
you obtain prior and posterior distributions as illustrated on the right of Fig. 24.
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Figure 24. Questionable posterior distribution (a distribution tail on 𝑙𝑜𝑔10(𝑘𝑒𝑒
) which tends to -5) on the

left (a), and a posterior distribution as expected on 𝑙𝑜𝑔10(𝑘𝑒𝑒
) on the right (b).

In MOSAICbioacc, it is not possible to change the prior distributions of parameters directly within the
application. To do this, we suggest you to download the R code and to change the prior distributions directly
in the R software. We remind you that to define the prior distributions you should not have a look at your
data, but only on previous experiments, literature data or expert knowledge.

You can also check this goodness-of-fit criterion through the estimated values of the model parame-
ters. If one of the model parameter is closed to the lower or the upper bound of its 95% credible interval
(𝜃 ≃ 10−5 or 𝜃 ≃ 105 with 𝜃 one of the model parameter), the prior distribution may be not appropriate. As
for example illustrated in Table 5, the distribution tail of 𝑙𝑜𝑔10(𝑘𝑒𝑒

) is too closed to the lower bound −5.

5.5 Correlations between parameters
If a high correlation is obtained between two parameters (e.g., more than 0.7 or less than -0.7 for the Pearson
correlation coefficient), it is an information to consider, not necessarily a bad result. It means that the
estimate obtained for one of these two parameters will strongly influence the estimate of the other one. Such
a high correlation may be due to the model structure itself (for example, by definition 𝑘𝑢𝑤

and 𝑘𝑒𝑒
are

correlated, Fig. 25, or to the data so that it cannot be avoided).

Sometimes, you may get a bimodal posterior distribution for one or several parameters what translates into a
double maximum on density plots (e.g., parameters 𝑘𝑢𝑤

and 𝑘𝑒𝑒
in Fig. 25). To make the application as

generic as possible, we defined priors for each parameter the most global as possible. However, depending
on the experimental conditions, the parameters may not be really included within the prior chosen range
of values. In such a case, we recommend you to contact sandrine.charles@univ-lyon1.fr if you are not
experimented with Bayesian inference and R software, or to change the downloadable R script by yourself.
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Figure 25. Example of a parameter correlation result which raises questions.
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5.6 PSRF
This criterion must be as close as possible to 1 for each model parameter to ensure that the between-chain
variability is small compared to the within-chain variability. Based on our experience, from a value of 1.03,
the results should be questioned. Most often, such a case appears when priors are not fully appropriate or
when the data do not contain enough information. One of the solution may be to increase the number of
iterations in the MCMC by using the R script directly.

5.7 WAIC and DIC
The WAIC or the DIC are not criteria to consider to check the goodness-of-fit. However, they are crucial
criteria to consider when two models or more are compared after fitting on a same data set.

In practice, users just need to choose the parameters they want to appear in sub-models. According to
the experimental conditions, several sub-models can indeed be considered and compared depending on the
hypotheses to test either on the exposure routes or on the elimination processes. Organisms may have been
exposed via several media (water and sediment in the following case study. By default, MOSAICbioacc fits the
full TK model. Then users can test different TK sub-models, for example sub-models with only one exposure
route (e.g., water or sediment, and compare them to the full model based on both the Deviance Information
Criteria (DIC) and the Watanabe-Akaike information criterion (WAIC) delivered by MOSAICbioacc. In order
to illustrate this framework, the data set of Physa acuta exposed to AgNO3 spiked water and clean sediment
for 7 days20 was uploaded in MOSAICbioacc.

First hypothesis: complete TK model

A first run of analyses was performed where parameters were automatically selected according to the
corresponding experimental design (Eqs. A1 and A2), as given within the uploaded data set (i.e., water and
sediment for the exposure routes).

𝑑𝐶𝑝(𝑡)
𝑑𝑡 = 𝑘𝑢𝑤

× 𝑐𝑤 + 𝑘𝑢𝑠
× 𝑐𝑠 − (𝑘𝑒𝑒

) × 𝐶𝑝(𝑡) for 0 ≤ 𝑡 ≤ 𝑡𝑐 (𝐴1)
𝑑𝐶𝑝(𝑡)

𝑑𝑡 = − (𝑘𝑒𝑒
) × 𝐶𝑝(𝑡) for 𝑡 > 𝑡𝑐 (𝐴2)

Second hypothesis: only account for water exposure

A second run of analyses was performed on the same data set that for the first run, but without considering
the uptake rate from sediment (Eqs. A3 and A4), because the concentration of the chemical in the sediment
is at environmental level.

𝑑𝐶𝑝(𝑡)
𝑑𝑡 = 𝑘𝑢𝑤

× 𝑐𝑤 − (𝑘𝑒𝑒
) × 𝐶𝑝(𝑡) for 0 ≤ 𝑡 ≤ 𝑡𝑐 (𝐴3)

𝑑𝐶𝑝(𝑡)
𝑑𝑡 = − (𝑘𝑒𝑒

) × 𝐶𝑝(𝑡) for 𝑡 > 𝑡𝑐 (𝐴4)

Comparison between the nested TK sub-models

For each analyses, the parameter estimates are summarized in Table 6. The WAIC and the DIC are penalized
deviance statistics accounting for the number of parameters for use in model comparison for a same data set19.
In this example (Table 6), the WAIC and DIC are similar between the two runs, as well as the estimations of
(𝑘𝑒𝑒

), considering or not the sediment exposure route. Thus, for this data set, and applying the parsimony
principle, it can be deduced that P. acuta accumulate AgNO3 principally by water. Silva et al. (2020)20 also
concluded that when accounting for double exposure via both water and clean sediment, water was likely to
be the main route.

5.8 Traces of MCMC
You must check whether the MCMC converge towards the same distribution limit (overlapping of the chains).
As shown in Fig. 26, the three MCMC do not overlap and do not converge towards the same distribution
limit for two model parameters (𝑘𝑢𝑤

and 𝑘𝑒𝑒
). If at least two of the other criteria are good enough, this can
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Table 6. Summary of parameters estimated for the Physa_AgNO3_Silva2020.csv data set for run 1
(complete TK model) and for run 2 (without considering sediment exposure route, 𝑘𝑢𝑠

= 0). For parameters,
the median value in given with its 95% credible interval into bracket.

run 1 run 2
𝑘𝑢𝑤

(days−1) 1.492 [1.874 ∗ 10−5;60480] 679[568.9;972.6]
𝑘𝑢𝑠

(days−1) 624.6[30.6;903.6] 0
𝑘𝑒𝑒

(days−1) 5.605 ∗ 10−3 [1.421 ∗
10−5;0.07212]

3.952 ∗ 10−3 [1.382 ∗
10−5;0.07106]

WAIC 177.9 178
DIC 178.3 178.6

be disregarded. If not, your experimental data could be not sufficient to performed bioaccumulation metric
calculations and to estimate parameters of a TK model.

sigmap

kee

kuw

11000 35000 59000 83000

11000 35000 59000 83000

11000 35000 59000 83000
0

25000

50000

75000

100000

0

1000

2000

3000

4000

0.002

0.004

0.006

0.008

Iteration

va
lu

e 1

2

3

Figure 26. Example of problematic MCMC traces because the three chains have not converged.
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6 Glossary
Bioconcentration factor (BCF): BCF is a parameter describing bioaccumulation of water-associated
organic compounds or metals into tissues of ecological receptors.

Biomagnification factor (BMF): BMF is a parameter describing bioaccumulation of food (or in the
predator’s prey)-associated organic compounds or metals into tissues of ecological receptors.

Biota-Sediment Accumulation Factor (BSAF): BSAF is a parameter describing bioaccumulation of
sediment-associated organic compounds or metals into tissues of ecological receptors.

Credible Interval (CI): A credible interval is the interval in which an parameter has a given probability. It
is the Bayesian equivalent of the confidence interval.

Directed Acyclic Graph (DAG): It symbolize the deterministic links between parameters and variables
for a model and the stochastic links between the observed and predicted data.

Monte Carlo Markov Chain (MCMC): A method which comprise a class of algorithms for sampling
from a probability distribution. By constructing a Markov chain that has the desired distribution as its
equilibrium distribution, one can obtain a sample of the desired distribution by recording states from the chain.

Potential Scale Reduction Factor (PSRF): Gelman-Rubin diagnostic to check the convergence of the
MCMC.

Toxico-Kinetic model (TK model): Toxico-kinetics is the mathematical description of the uptake and
disposition of a chemical in the organism. TK modeling is usually implemented by describing the time course
of the amount or concentration of the parent substance and its metabolites in all the organism.
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